wzory na potęgi i pierwiastki
5–7 Pierwiastki. • definicję pierwiastka arytmetycznego n–tego stopnia (n∈ N i n > 1) (K) • prawa działań na pierwiastkach; w tym wzór na obliczanie pierwiastka n– tego stopnia z n–tej potęgi oraz wzór na obliczanie n–tej potęgi pierwiastka n–tego stopnia (K) • definicję pierwiastka arytmetycznego n–tego
Po wykonaniu powyższych przekształceń możemy zastosować trzy pierwsze wzory na potęgi: Powyższe przekształcenie nie jest jedynym, jakie będziemy wykorzystywać, aby uzyskać tą samą podstawę. W zadaniach mogą pojawiać się pierwiastki oraz ułamki. Jak zamienić pierwiastek na potęgę przedstawiliśmy w poprzednim podrozdziale
Warszawa 2015 f1. WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględną liczby rzeczywistej x deiniujemy wzorem: Liczba x jest to odległość na osi liczbowej punktu x od punktu 0. Dla dowolnej liczby x mamy: x 0 x 0 wtedy i tylko wtedy, gdy x = 0 −x = x Dla dowolnych liczb x, y mamy: = u001f Ponadto, jeśli y ≠ 0, to . u001f u001e u001e
Temat: POLE TRÓJKĄTA RÓWNOBOCZNEGO. Rozwiąż poniższe zadanie tekstowe. Jeśli otrzymasz ułamek, wpisz go w postaci dziesiętnej.
arytmetycznym. Wiesz na przykład, że dla liczby rzeczywistej dodatniej i liczby całkowitej dodatniej symbol - czyli pierwiastek stopnia z - oznacza liczbę dodatnią, która po podniesieniu do potęgi o wykładniku będzie równa . Pierwotnie, jak podaje encyklopedia Britannica, słowo oznaczające korzeń w kontekście
nonton alice in borderland season 2 idlix. kkk12 Użytkownik Posty: 29 Rejestracja: 28 gru 2009, o 20:13 Płeć: Kobieta Lokalizacja: Polska Podziękował: 3 razy wzory skróconego mnożenia, potęgi i pierwiastki Jak to rozwiązać \(\displaystyle{ [ ( 4-12 ^{ \frac{1}{2} } ) ^{ \frac{1}{2} }+( 4+12 ^{ \frac{1}{2} } ) ^{ \frac{1}{2} } ] ^{2}}\) Ostatnio zmieniony 29 gru 2009, o 12:55 przez czeslaw, łącznie zmieniany 1 raz. Powód: Poprawa wiadomości. kkk12 Użytkownik Posty: 29 Rejestracja: 28 gru 2009, o 20:13 Płeć: Kobieta Lokalizacja: Polska Podziękował: 3 razy wzory skróconego mnożenia, potęgi i pierwiastki Post autor: kkk12 » 29 gru 2009, o 13:04 ale jak to rozwiązać do końca bo mi jakoś nie chce wyjść kkk12 Użytkownik Posty: 29 Rejestracja: 28 gru 2009, o 20:13 Płeć: Kobieta Lokalizacja: Polska Podziękował: 3 razy wzory skróconego mnożenia, potęgi i pierwiastki Post autor: kkk12 » 29 gru 2009, o 14:53 a później miodzio1988 wzory skróconego mnożenia, potęgi i pierwiastki Post autor: miodzio1988 » 29 gru 2009, o 17:31 Skrocic co się da i zostawic kkk12 Użytkownik Posty: 29 Rejestracja: 28 gru 2009, o 20:13 Płeć: Kobieta Lokalizacja: Polska Podziękował: 3 razy wzory skróconego mnożenia, potęgi i pierwiastki Post autor: kkk12 » 29 gru 2009, o 21:10 jak się skróci to zostaje mi \(\displaystyle{ 8+2* \sqrt{4- \sqrt{12} } * \sqrt{4+ \sqrt{12} }}\) i jak to mam policzyć miodzio1988 wzory skróconego mnożenia, potęgi i pierwiastki Post autor: miodzio1988 » 29 gru 2009, o 21:16 Te pierwiastki jeszcze wymnoz żabciu. kkk12 Użytkownik Posty: 29 Rejestracja: 28 gru 2009, o 20:13 Płeć: Kobieta Lokalizacja: Polska Podziękował: 3 razy wzory skróconego mnożenia, potęgi i pierwiastki Post autor: kkk12 » 29 gru 2009, o 21:19 właśnie w tym problem że nie wiem jak miodzio1988 wzory skróconego mnożenia, potęgi i pierwiastki Post autor: miodzio1988 » 29 gru 2009, o 21:21 \(\displaystyle{ \sqrt{4- \sqrt{12} } * \sqrt{4+ \sqrt{12} }= \sqrt{(4- \sqrt{12}) \cdot (4+\sqrt{12})} = \sqrt{...}}\) kkk12 Użytkownik Posty: 29 Rejestracja: 28 gru 2009, o 20:13 Płeć: Kobieta Lokalizacja: Polska Podziękował: 3 razy wzory skróconego mnożenia, potęgi i pierwiastki Post autor: kkk12 » 29 gru 2009, o 21:22 dzięki
Potęgowanie Potęga to uogólniony zapis wielokrotnego mnożenia elementu przez siebie. Zapis xⁿ oznacza n-krotne mnożenie przez siebie x. xⁿ = x • x • x • … • x, gdzie n = ilość x Potęgowany element (n) nazywamy podstawą, a liczba mnożeń, zapisywana u góry (w tzw. indeksie górnym) to wykładnik potęgi. Przykład: 4³ = 4 • 4 • 4 = 64 x° = 1 gdy x ≠ 0 Przykład: 8° = 1 X¹ = X Przykład: 2¹ = 2 Druga potęga to kwadrat danej liczby (x²), trzecia to sześcian (x³). Przykład: gdy x ≠ 0 Przykład: Przykład: (x + y)ⁿ = xⁿ • yⁿ Przykład: (6 • 2)² = 6² • 2² = 36 • 4 = 144 jeśli y ≠ 0 Przykład: gdy x ≠ 0 Przykład: . Pierwiastkowanie Pierwiastkowanie to działanie odwrotne do potęgowania. Symbolem pierwiastka jest .Pierwiastkiem stopnia n liczby a jest liczba b. Zapisujemy to w ten sposób: a – liczba podpierwiastkowa n – stopień pierwiastka (jeśli pierwiastek jest kwadratowy to pole jest puste) b – pierwiastek n-tego stopnia z a (czyli wynik pierwiastkowania) Pierwiastkiem liczby 1 jest liczba 1, bo 1 • 1 = 1 Pierwiastkiem liczby 4 jest liczba 2, bo 2 • 2 = 4 Pierwiastkiem liczby 9 jest liczba 3, bo 3 • 3 = 9 Pierwiastkiem liczby 16 jest liczba 4, bo 4 • 4 = 16 Pierwiastkiem liczby 25 jest liczba 5, bo 5 • 5 = 25 Pierwiastkiem liczby 36 jest liczba 6, bo 6 • 6= 36 ...itd. Zapisujemy to w ten sposób: = 1, bo 12 = 1 = 2, bo 22 = 4 = 3, bo 32 = 9 = 4, bo 42 = 16 = 5, bo 52 = 25 = 6, bo 62 = 36 ...itd. Pamiętajmy, że , ponieważ 00 to symbol nieoznaczony. Własności (prawa działań na pierwiastkach) Pierwiastek stopnia drugiego (n = 2) to pierwiastek kwadratowy. Pierwiastek stopnia trzeciego (n = 3) to pierwiastek sześcienny. Zapisujemy go tak: . Pierwiastek czwartego stopnia (n = 4) zapisujemy: .
Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n–tą potęgę:(mnożymy a przez siebie tyle razy, ile wynosi n) Pierwiastkiem arytmetycznym stopnia n z liczby a ≥ 0 nazywamy liczbę b ≥ 0 taką, że bn =a. W szczególności, dla dowolnej liczby a zachodzi równość: √a2 = |a| Jeżeli a 0 i b > 0 , to zachodzą równości: ar • a = ar + s (ar) = ar • s (a • b)r = ar • br Jeżeli wykładniki r, są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb a ≠ 0 i b ≠ 0. Źródło: Centralna Komisja Egzaminacyjna,
0punktów mistrzowskich do zdobyciaPodsumowanie zdobytych umiejętnościPotęgowanieUcz się sam(a)!ĆWICZENIEPotęgowanieRozwiąż co najmniej 5 z 7 pytań, aby przejść na następny poziom!Quiz 1Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 240 punktów 2Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 320 punktów 3Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 400 punktów 4Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 320 punktów 5Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 240 punktów swoje umiejętności w zakresie wszystkich tematów należących do tego rozdziału i zbierz 1900 punktów tym dzialeZrozumienie i rozwiązywanie wyrażeń potęgowych, pierwiastków i zapisu wykładniczego bez użycia algebry.
Pierwiastki spędzają sen z powiek niejednemu uczniowi. Czy rzeczywiście pierwiastkowanie jest trudne? Niekoniecznie, pod warunkiem, że zapamiętamy jedną regułę: by obliczyć pierwiastek z danej liczby, musimy znaleźć liczbę, która podniesiona do potęgi drugiej, daje liczbę pod pierwiastkiem. Brzmi skomplikowanie? Sprawdźmy, jak to działa na przykładach. Zobacz film: "Wysokie oceny za wszelką cenę" spis treści 1. Pierwiastkowanie - co to jest? 2. Pierwiastki - ważne wzory 1. Pierwiastkowanie - co to jest? Pierwiastkowanie to odwrotne działanie do potęgowania. Aby zrozumieć, czym są pierwiastki, jak wygląda ich zapis i jak je obliczyć, zaczniemy od wyjaśnienia, co oznaczają poszczególne symbole i omówienia najważniejszych wzorów. Podstawowy wzór na pierwiastki to: Wzór na obliczenie pierwiastka Powyższy zapis odczytujemy: Pierwiastek n-tego stopnia z liczby a równa się b, gdy b do potęgi n-tej równe jest a". W tym zapisie: n – to stopień pierwiastka, a – liczba podpierwiastkowa, b – pierwiastek n-tego stopnia z liczby a, wynik pierwiastkowania. Zobacz także: Liczby całkowite - czyli jakie? Przykłady Pierwiastki możemy także określić dla liczb zespolonych. W matematyce wyższej pierwiastki zespolone z jedynki odgrywają bardzo istotną rolę. Pierwiastki z jedynki nazywamy także liczbami de Moivre’a dla uhonorowania francuskiego matematyka Abrahama de Moivre’a. Pierwiastki n-tego stopnia z jedności są na płaszczyźnie zespolonej wierzchołkami wielokąta foremnego o n bokach, które są wpisane w okrąd jednostkowy. Jego jeden wierzchołek leży w punkcie 1. Pierwiastki n stopnia z 1 na płaszczyźnie zespolonej (Wikipedia) Wierzchołki dzielą okąg na n równych części. Zobacz także: Średnia ważona - co to jest? 2. Pierwiastki - ważne wzory Obliczanie pierwiastka z danej liczby to dopiero początek. Poniżej przeanalizujmy inne istotne wzory związane z pierwiastkowaniem. Wzór na pierwiastek pierwiastka: Wzór na pierwiastek pierwiastka Z poniższego wynika, że a to liczba większa lub równa 0. Z kolei n i m są liczbami naturalnymi (z wyjątkiem liczb 0 i 1). Wzór na sumę pierwiastków: Wzór na sumę pierwiastków Zapis oznacza, że liczby a oraz b są większę lub równe 0. Zobacz także: Jak obliczyć funkcje trygonometryczne? Wzór na mnożenie pierwiastków: Wzór na mnożenie pierwiastków A oraz b to liczby, które są większe lub równe 0. Z kolei n oraz m to liczby naturalne z wyłączeniem liczb 0 i 1. Wzór na dzielenie pierwiastków: Wzór na dzielenie pierwiastków W powyższym zapisie: a jest liczbą większą lub równą 0. B to liczba większa od 0. N oraz m to liczby naturalne z wyłączeniem liczb 0 i 1. Wzór na potęgę pierwiastka: Wzór na potęgę pierwiastka Gdzie a jest liczbą większą lub równą 0. N i m to liczby naturalne z wyłączeniem liczb 0 i 1. Wzór na wartość bezwzględną pierwiastków: Wzór na wartość bezwzględną pierwiastków Oznacza to, że liczby a i b są większe bądź równe 0. Zobacz także: Jak obliczyć pierwiastek z liczby? polecamy
wzory na potęgi i pierwiastki